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Abstract. Using string kernels, languages can be represented as hyper-
planes in a high dimensional feature space. We present a new family of
grammatical inference algorithms based on this idea. We demonstrate
that some mildly context sensitive languages can be represented in this
way and it is possible to efficiently learn these using kernel PCA. We
present some experiments demonstrating the effectiveness of this ap-
proach on some standard examples of context sensitive languages using
small synthetic data sets.

1 Introduction

Much data consists of strings of symbols. A set of symbol strings is known
as a language: a natural machine learning problem is to infer a definition of a
language from a set of positive examples of strings in the language. This problem
has been much studied as grammatical inference, and this is the term we will
use. This type of problem occurs in many fields. In data mining, for example,
there may be a need to learn to recognise strings in particular flexible formats.
Simple cases are email addresses or page formatting commands; more complex
cases might be price-lists, postal addresses, or stock upgrades in free-text broker
reports. Sequence annotation in bioinformatics is another application.

Grammatical inference algorithms for regular languages are now well un-
derstood, either using state merging algorithms for deterministic finite state
automata, or using Hidden Markov Models (HMMs), the non-deterministic
equivalent, with the EM algorithm. For context free languages, some recent
approaches have had some limited success (Starkie et al., 2004). However, it is
well known that certain features of natural language cannot be described by con-
text free grammars, and require the power of mildly context sensitive grammars,
which cannot be learned with current techniques.

In this paper we consider a new approach to grammatical inference based on
the identification of hyperplanes in high-dimensional feature spaces induced by
string kernels. This is entirely different from techniques previously studied in
computational linguistics. We present and discuss computational experiments
on a range of synthetic examples of languages chosen to be at different levels
of the Chomsky hierarchy. We compare the performance of the new techniques
with HMMs.
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Our experiments may appear non-standard to machine learning researchers.
We learn from positive examples only, for two reasons: first, this is a standard
approach in language-learning theory; and second, because informative negative
examples — “near misses” — may be difficult to generate, and they are rare in
practice in real data. We do generate negative examples as part of the test data.

A second way in which we depart from the conventions of kernel learning
experiments is that we seek language descriptions as hyperplanes in the feature
space, rather than as the more conventional half-spaces or clusters. Equality
constraints are easy to interpret in simple cases, and can represent many of
the particular languages we are interested in, though in other cases inequality
constraints are necessary.

Thirdly, we use synthetic data generated from languages of known structure,
rather than naturally occurring data. Our experiments are designed to explore
the sorts of languages that this technique can learn rather than to demonstrate
the utility of these methods on practical problems; an issue that we will address in
future work. Already, these results are highly relevant to some issues in language
learnability (Gentner et al., 2006).

We seek learnable representations that are sufficiently expressive to represent
these mildly context sensitive languages. A key example, which we shall return
to is from Swiss German (Shieber, 1985), though similar phenomena occur in
Dutch. Abstracting away from some details, Swiss German has some subordi-
nate clauses where a sequence of nounphrases can be followed by a sequence of
verbs, of the same length, but where there are agreement constraints between
the nouns and the verbs. Particular verbs require their corresponding nouns
to be marked as a particular case, accusative or dative. Thus if we represent
verbs by Vacc, Vdat where the subscript indicates the required case of the argu-
ment, and the verbs by Nacc, Ndat, the grammatical sentences are of the form
NaccNdatNdatVaccVdatVdat: the sequence of nouns must agree with the sequence
of verbs in the same order. No other orders are allowed, and there is no strict
upper bound on the length of this construction. It is easy to see that this is
not a context free language through the application of a pumping lemma. It
currently appears that all currently observed non context free phenomena in
language1 lie within the class of mildly context sensitive languages, a class of
languages defined by a number of weakly equivalent formalisms such as linear
indexed grammars, tree adjoining grammars etc. These languages also include
other non CF languages such as {anbncn | n > 0}.

Modelling the acquisition of natural languages by children, or acquiring rep-
resentations of natural language for NLP tasks will eventually require represen-
tations that can represent these structures, together with learning algorithms
capable of acquiring them from observable data.

Formally we situate our work in the context of classical grammatical inference
from positive data: given an unknown language, and a finite sample of strings
drawn from that language, and without any negative data, i.e. strings not in the

1 We note a few exceptions whose status is questionable such as Old Georgian, and a
fraction of the Chinese number system.
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language and marked as such, we wish to have an algorithm that can acquire a
representation of the language that will enable us to determine whether a new
string is in the language or not. The desiderata for such an algorithm include:
reasonable observed sample complexity under natural distributions, polynomial
computational complexity, robustness to small amounts of noise in the strings,
and convergence over a sufficiently large class of languages.

1.1 Techniques

The familiar representations of languages are rewriting systems and automata of
various types. These two families of representations converge at various points
to give the well known Chomsky hierarchy. Unfortunately even low levels of the
hierarchy are sufficiently powerful to represent cryptographically hard problems
when considered as learning problems (Kearns & Valiant, 1989).

A completely different approach is to represent languages through linear con-
straints on the substrings (Salomaa, 2005). As a trivial example, consider the
language over the alphabet {a, b} consisting of equal numbers of as and bs in
any order: example strings are bbaa, ab, ababba etc. This is a context free lan-
guage, and can be defined either as a pushdown automaton, or a surprisingly
complicated context free grammar. But we can clearly directly represent this as
the set of all strings that satisfy a certain linear equation on the occurrences of
the symbols a and b, L = {u ∈ {a, b}∗ | |u|a = |u|b} where we write |u|a for the
number of times a occurs in u.

Looked at in this representation, a grammatical inference algorithm instantly
suggests itself: map the strings into a certain vector space, and look for a low
dimensional subspace that the data lie in. In this case the Parikh map (Parikh,
1966) is sufficient. Other languages will require the use of counts of substrings of
length greater than one, and in this case we can use the implicit feature map de-
fined by a string kernel, and where appropriate, work in the dual representation.
Our technique combines two well understood techniques: kernel PCA (Schölkopf
et al., 1998) together with string kernels (Watkins, 2000; Lodhi et al., 2002).

1.2 Preliminaries

An alphabet Σ is a non-empty finite set of symbols, often called letters. The set
of all strings over Σ, written Σ∗ is defined as the free monoid over Σ with null,
the empty string, written as ε. A language L is a subset of Σ∗.

If u is of length n we can refer to the individual symbols as u = u1 . . . un. If
u, v ∈ Σ∗, u is a subsequence of v if there are indices i = (i1, . . . i|i|) with 1 ≤
i1 < · · · < i|u| ≤ |v|, such that uj = vij for j = 1 . . . |u|. We write uR = un . . . u1
for the reversal or mirror image of u.

For u, v ∈ Σ∗ we will write |u|v for the number of times that v occurs in u
as a non-contiguous substring. For example, if Σ = {a, b, c}, and u = caab, then
|u|ab = 2, |u|cb = 1.

The choice of kernel defines the mapping to the feature space. We used a
number of different kernels in our experiments. We will use the terminology
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and notation of (Shawe-Taylor & Christianini, 2004). Here i refers to a strictly
ordered list of indices.

Fixed length subsequences kernel. All non contiguous subsequences of
length k. The features are restricted to |u| = k.

Parikh kernel. This is the special case of the fixed length subsequences kernel
with k = 1. The feature space thus has dimension |Σ|.

Gap weighted subsequences kernel. All non contiguous subsequences of
length k where the gaps are weighted by λ. φu(s) =

∑
i:u=s(i) λl(i) where

|u| = k. l(i) is defined as 1 + i|i| − i1.

In the experiments reported here, we use k = 2 or k = 1.

2 Representational Power

Before discussing the learnability of this class, we can look at the representational
power of the formalism. For any given string kernel κ we can define the class
of languages which are the pre-images of finite dimensional hyperplanes in the
induced feature space. We call these the κ-planar languages. A language is κ-
planar, if there exist strings w1, . . . , wn such that

L = {w ∈ Σ∗ | ∃α1 . . . αn,
∑

i

αi = 1 : φ(w) =
∑

i

αiφ(wi)}

Different kernels will enable different languages to be defined. An important
distinction is between kernels where the implicit feature map is injective, and
those where it is not. The k-subsequence kernel is not injective, for any k. When
k = 1, the two strings ab and ba are equivalent, when k = 2, the two strings
abba and baab are equivalent, and such examples can be generated for any k.
In practice, for sufficiently large values of k, the proportion of strings that are
mapped to the same point in feature space is small. Other kernels however are
normally injective. The gap-weighted kernel weights features by polynomials in
a parameter λ, corresponding to the numbers of gaps. Ignoring numerical issues,
we can ensure that it is injective by setting the value of λ to be a suitable
transcendental number, say 1/e, which since it will not be the solution of any
polynomial, means that the feature values will coincide only when the strings
are identical.

We will start with a trivial language over the two letter alphabet Σ = {a, b};
Lab = {u ∈ Σ∗ | |u|a = |u|b}. This is an infinite language, which consists of
all strings with equal numbers of as and bs. Example strings in the language
are ab, ba, aaaabbbabb, bbaa, . . . . It is easy to show that this is not a regular
language, by an application of a pumping lemma, or to define a push-down
automaton or context free grammar that generates this. But the way we have
written it is explicitly as a linear relationship between two substring counts. If
we consider the feature mapping defined by the Parikh kernel, which has exactly
two dimensions, we can see that φ(Lab) = {(x, x)|x ≥ 0}. Clearly these points
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lie in a hyperplane (a line in this case) in the feature space R
2. Moreover, the

preimage of the minimal hyperplane containing all the points of the language is
exactly Lab. More formally we can define for any language L and feature map
φ : Σ∗ → H , where H is some Hilbert space, the hyperplane defined by (all
affine combinations of) L as

H(L) =

{
∑

i

αiφ(ui) ∈ H | ∃ui ∈ L , αi ∈ R, s.t.
∑

i

αi = 1

}

and the language L̂ as the preimage of this hyperplane

L̂ = {w ∈ Σ∗ | φ(w) ∈ H(L)}

In this case it is easy to see that L̂ = L.
A slight modification of this approach would be to consider all linear com-

binations: i.e. removing the constraint that the coefficients sum to one. This
would make the dimension of the subspace 1 higher, and for some kernels would
also change the representational power. For the Parikh kernel, all such languages
would have to include the empty string.

We are interested in learning from finite positive data sets. A natural algo-
rithm suggests itself. Given a finite subset of L, say S, we can clearly define as
our hypothesis Ŝ: the preimage of all affine combinations of the sample points.
In this particularly trivial case we can see that for all S ⊂ L with at least two
distinct elements, Ŝ = L. If we take a slightly less trivial language

Lanbn = {anbn | n > 0} (1)

it is easy to see that if we use the same Parikh kernel, L̂anbn = Lab. Since the
Parikh kernel is not injective and indeed any two permutations of the same string
are mapped to the same point, the representational power of this is very limited
since it cannot represent any order constraints.

Consider the kernel κ2, the subsequence kernel of length 2. If w ∈ Lanbn , then
clearly |w|ba = 0. Thus using these features this language can be represented as
|s|a = |s|b and |s|ba = 0, without any recursive structure or center-embedding
(Gentner et al., 2006). Since κ2 has such features we will now be able to repre-
sent languages like Lanbn as hyperplanes in this richer feature space. The use of
features corresponding to substrings of length greater than 2 increases the ex-
pressive power. For example, while κ2 can express ordering constraints, κ3 can
express that a certain string must appear between two other strings, and so on.
This increased expressivity comes at a price; the dimensionality of the feature
space is O(|Σ|k) for κk, and thus the amount of data required to learn a simple
language can increase radically.

The relationship between k-testable languages and planar languages defined
by the k-spectrum kernel is a useful illustration of the power of our technique.
k-testable languages are those that are defined by a set of admissible k-length
substrings. Clearly any k-testable language defined by n strings u1, . . . un, |ui|
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= k, is also a planar language defined by the n-dimensional subspace spanned
by these n substrings (we neglect here the problems of boundary symbols and
prefixes and suffixes). But the class of planar languages contains not just the
axis-aligned hyperplanes defined by each of these basis vectors, but also non-
axis aligned hyperplanes.

It is worth noting that the class of planar languages does not have nice closure
properties. It is closed under reversal and intersection, but not in general under
union, concatenation, or other standard operations (Clark et al., 2006).

3 Algorithm

We have described the algorithm informally above in terms of the primal repre-
sentation in the feature space. In practice, it is more convenient to perform the
computations in a dual representation using only kernel operations. For some
of the kernels, the number of dimensions in the feature space is less than the
number of data points; nonetheless we work throughout with the kernel repre-
sentation, for ease of use. The training phase of the algorithm follows a standard
kernel PCA method (Shawe-Taylor & Christianini, 2004).

1. Inputs: a kernel, a set of training data, a set of test data.
2. Compute Gram matrix of the training data.
3. Compute translated Gram matrix, with center at origin in feature space.
4. Compute k, the rank of the translated Gram matrix.
5. Compute the k eigenvectors and eigenvalues.
6. Compute the translated matrix of training-test products.
7. Project the test strings onto the hyperplane defined by the training data.
8. Compute perpendicular distance from test strings to hyperplane.
9. If this distance exceeds a threshold, label the data as negative, otherwise

label it as positive.

It is easy to establish that for a kernel that can be evaluated in polynomial
time, and where the size of the representation is taken to be the rank of the
plane, the class of all planar languages can be polynomially identified in the
limit from positive data alone. Similarly, it can be proved that this class can be
PAC-learned, with sample complexity polynomial in the rank of the language. A
description of the theoretical aspects of this can be found in (Clark et al., 2006).

4 Experiments

This algorithm was implemented using MATLAB. On all of the experiments
reported here, the running times were only a few minutes. We found that the
threshold was easy to set: generally the squared residuals were either very close
to zero, 10−10, or greater than 0.1.

We generated some synthetic data sets to evaluate the potential of this ap-
proach. We selected a number of languages that have been proposed in the
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literature, generally from small alphabets. For comparison, we also evaluated it
on one of the more complex grammars from the Omphalos context free gram-
matical inference competition (Starkie et al., 2004); this is at the state of the
art for context free grammatical inference.

For each of the languages we generated some positive data, by sampling from
a natural distribution. For example, for the copy languages, we first generated a
random length, and then created a random string by sampling from the uniform
distribution over all strings of that length. We then duplicated it to create the
sample string. All of the positive data was generated IID. The lengths of the
strings were generally less than 20, with a few exceptions: the strings from the
Omphalos data set are much longer than this.

For evaluation we need both positive and negative data. Negative data is
more of a problem. Simply generating random strings in a similar way does not
produce a test set sufficiently difficult to distinguish the true hypothesis from
a similar but incorrect one, without using astronomical amounts of data – the
same problem was encountered by the organisers of the Omphalos competition
(Starkie et al., 2004). We thus generated the negative data sets 50% from random
strings from a uniform distribution over strings, and 50% drawn from languages
that are close to the true one. Thus for example, when testing languages like
An − Dn, we generated samples from {a+b+c+d+} as well as from {a, b, c, d}+.

For comparison, we also implemented two baseline systems, based on Hidden
Markov Models, and Probabilistic Context Free Grammars. For the HMM sys-
tem, we randomly initialised a HMM with a fully connected transition matrix,
and with an explicit end of string transition for each state, and for the PCFG
system we used a CNF grammar. In both cases they were trained to convergence
with respectively the Baum-Welch algorithm and the inside-outside algorithm.
We then evaluated the test strings and labelled them as positive or negative
according to whether the probability of the string was above a simple length-
based threshold. Though slightly ad hoc, empirically we observed that this was
sufficient to distinguish the language when the model structure was correct.

4.1 Languages

We tried a number of well-studied languages from computational and mathemat-
ical linguistics, as well as some variations, see Table 1. Bracket is the bracket
(Dyck) language (i.e., as and bs are balanced), which is known to be context
free. The corresponding phenomenon in natural language is center embedding,
which seems to exist only in a very restricted form. Even is the set of all strings
from {a, b}∗ that are of even length, which is obviously a regular language.
ChinNr is an abstract representation of Chinese number words (Radzinski,
1991), GermScramb of German verb scrambling (according to (Becker et al.,
1992)). AnBmCnDm is known to be mildly context sensitive but not express-
ible by Linear Indexed Grammars (LIG). The same holds for MultCop with
k ≥ 0. DepBranch, the dependent branches language, is mentioned in (Vijay-
Shanker et al., 1987) as an example of a language that cannot be generated by
LIG. Note that An − En is also known to be beyond Tree Adjoining Grammars
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Table 1. Definitions of target languages used. The column labels class states whether
the language is regular (REG), context free (CF), mildly context sensitive (MCS) or
context sensitive (CS). We use the map z, defined as z(a) = e, z(b) = f, z(c) = g, z(d) =
h. π(u) allows any permutation of the string u. Languages with an asterisk have had
additional hard negative examples generated.

Name Class Definition Example strings

Bracket CF {ab, avb, vw | v, w ∈ Bracket} aaabbb, ab, aabbab
PalinDisj CF {vw | v ∈ {a, b, c, d}∗, wR = z(v)} abcgfe, dh, bdhf
Palin CF {vvR | v ∈ {a, b, c, d}∗} aa, bdaadb
Even REG {{a, b}2n | n ∈ N} cbbabc, acab
ChinNr ∗ CS {abk1 . . . abkr | k1 > · · · > kr > 0} abbbbabbb, abbbabbab
Mix MCS {s ∈ {a, b, c}∗ : |s|a = |s|b = |s|c} bac, babcac
GermScramb MCS {π(w)v | w = z(v), v ∈ {a, b, c, d}+} dbhf , bdacfghe
AnBnCn ∗ MCS {anbncn | n > 0} bde, abdcfe
An − Dn ∗ MCS {anbncndn | n > 0} adfh, bbcdefhg
An − En ∗ CS {anbncndnen | n > 0} acegi , aadcfeghij
DepBranch CS {anbmcmdlelfn | n = m + l ≥ 1} aaaabcdddeeeffff ,

MultCop CS {wk | k > 0, w ∈ {a, b}∗} babbab, abaabaaba
AnBmCnDm ∗ MCS {anbmcndm | n, m > 0} acfh, abaabccdeffeehgh
CrossDepDA MCS {vzf(v) | v ∈ {a, b, c, d}∗} dbhf , cbdcgfhg
CrossDepCS MCS {wxw | w ∈ {a, b, c, d}∗} cxc, bdaxbda
CrossDepND MCS {ww | w ∈ {a, . . . , h}∗} cgcg , fcgefcge
Omp4 CF Omphalos problem 4 Omphalos website

2

(TAG), in contrast to An − Dn and AnBnCn. The languages used in our train-
ing data are actually variants, where an is replaced by {a, b}n, bn by {c, d}n and
so on. This was done to ensure that there were an exponentially large number of
distinct strings in the language of bounded length. If not, simple memorization
algorithms could perform well. Mix (Bach, 1981) is another well-known example
of a mildly context sensitive language, and has been shown not to be expressible
by TAG.

CrossDepDA is a copy language with just one copy w of v, where v and w
have a disjunct alphabet. CrossDepCS is a copy language with just one copy,
and a center symbol that marks the boundary between the two subwords, and
CrossDepND is a copy language with one copy, and no center marker.

4.2 Results

Table 2 displays the results of training the baseline models and kernel PCA with
two different kernels on these languages.3 We can see that in all but four cases
the string kernel method performs very well, converging to a hypothesis with
very small error, whereas the baseline methods overgeneralize. In particular for
2 www.irisa.fr/Omphalos/data-sets.html
3 Since the data sets are synthetic, it is not appropriate to compare the figures from

different rows, since the negative data has been generated to highlight the weaknesses
of the various approaches.
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Table 2. Test results on various data sets; training sets all of size 100. For each data
set we report the percentage error rate separately for positive and negative data (lower
is better). FP is the number of false positives as a percentage of the negative data,
and FN is similarly the false negative rate. The kernels used are the 2-subsequence
kernel and the 2-gap-weighted kernel with λ = 0.5. In both cases we added the Parikh
kernel. The R column reports the dimension of the subspace, equivalently the rank of
the data set in the feature space. We could not complete the PCFG experiments for
the Omphalos data set because of the length of the strings.

Language |Σ| +/- Test PCFG HMM 1+2-subseq GapWeighted

FP FN FP FN FP FN R FP FN R

Bracket 2 537/463 0 0 3.4 1.3 10.8 0 3 10.8 0 5

PalinDisj 8 505/495 0.8 0 4 8.1 0 0 20 0 0 30

Palin 4 510/490 6.1 0 83.5 2.9 16.1 0 14 16.1 0 14

Even 3 739/261 0 0 0 0 100 0 12 100 0 12

ChinNr 2 500/500 94.4 0 36.0 0 100 0 6 100 0 6

Mix 3 500/500 100 0 94.6 0 0 0 5 0 0 10

GermScramb 8 500/500 100 0 97.8 0.6 0 0 26 0 0 51

AnBnCn 6 509/491 8.8 0 20.4 0 0 0 17 0 0 25

An − Dn 8 501/499 6.4 0 46.5 0 0 0 24 0 0 38

An − En 10 500/500 38 0 37.5 0 0 0 32 0 0 54

DepBranch 6 500/500 6.4 0 6.4 0 0 0 5 0 0 14

MultCop 2 500/500 100 0 99.2 1.2 100 0 6 100 0 6

AnBmCnDm 8 507/493 50.4 0 49.5 0 0.8 0 31 0.8 0 42

CrossDepDA 8 505/495 4.2 0 5.7 4.3 0 0 20 0 0 36

CrossDepCS 5 515/485 3.3 2.1 8.7 2.1 0 0 20 8.5 0 27

CrossDepND 8 506/494 64.2 5.0 76.3 6.3 70.0 6.7 71 100 0 72

Omphalos 25 277/305 - - 17.4 0.4 0 30 344 0 6 325

our motivating example from Swiss German, CrossDepDA, we see a zero error
rate. The four cases in question are: ChinNr where the HMM model performs
well by learning a simple regular approximation; Even where both of the baseline
models correctly learn the hypothesis; MultCop which is a very hard language
to learn, in fact one of the authors was unable to determine what language it was
from the generated positive data alone; and CrossDepND where in the absence
of a midpoint symbol, there are no features that can define the language. In these
cases, where the string kernel method fails to produce an accurate hypothesis,
it overgenerates significantly. In the case of AnBmCnDm the string kernel
method overgeneralises slightly, but very plausibly by allowing empty strings
(generalising > 0 to ≥ 0). The string kernel method when applied to Bracket
learns merely the hypothesis that there are equal numbers of as and bs, but is
incapable of learning that no prefix must violate the constraint that there are
more bs than as. HMM does well on Bracket, contrary to expectations, but
merely by modelling some local features, even though it is CF.

The kernel approach performs well on CrossDepDA and CrossDepCS.
Either the disjunct alphabet or the inclusion of a center symbol are sufficient
for the kernel method to perform well. Note that though both kernels score



Languages as Hyperplanes 99

perfectly on CrossDepDA, the 1+2-subsequence kernel will give false positives
with certain strings such as abbafeef : strings of this type are so rare that they
don’t show up in test sets of this size. The Omphalos data is from a much
more complex grammar, and consists of much longer strings. As a result, we
could not use the PCFG algorithm, because the time complexity of the inside
outside algorithm is cubic in the length. Note that though neither of the kernels
can induce an accurate representation, some structure has been learned, even
though as the high rank of the induced representations indicates, it overgenerated
substantially.

In general, if the subspaces are of high rank, with respect to the feature space,
then this is a clue that the algorithm has failed to capture significant structure.
Indeed CrossDepND illustrates this perfectly: the dimension of the feature
space with an alphabet size of 8 is 72 for both kernels, and the rank is 71 or 72.
We do not report results here for kernels with longer features; on the same data
sets, with k = 3, we have a very large number of false negatives, because the rank
of the languages becomes very much higher. For example, on the GermScramb
data set, with k = 3 the false positive rate goes up to 94% with a rank of 94.
With the longer features the rank of this language has increased to 914, so the
span of the training data, which has size 100, is clearly insufficient.

5 Discussion

When the target language is a planar language for the kernel being used, the
algorithm converges rapidly and exactly. Clearly, the dimension of the hyper-
plane (equivalently, the rank of the data in the feature space) is the key factor.
Denoting this by r, it is clear that any exact representation of the hypothesis
requires at least r points that are independent in the feature space. Empiri-
cally we observed that the hypothesis converged rapidly after the first r points.
Conversely, when the language being learned is not exactly expressible as a hy-
perplane, the hypothesis converged to a superset of the target language. Thus
in general, for sufficiently large amounts of data, we observe false positives but
no false negatives. In some cases this superset was the whole monoid, Σ∗; for
example the language Even. This is a good example of a comparatively simple,
regular language that cannot be represented as a hyperplane by any of the ker-
nels that we use here. Of course, it would be easy to rectify this by considering
a kernel that also had features corresponding to φn(w) = 1 iff |w| is divisible by
n. This language is easily learnable by the HMM baseline, surprising as it may
seem. Overall, the string kernel method performs very well on these languages,
and outperforms the baselines in general, especially in the context sensitive lan-
guages.

The main computational bottleneck with this algorithm is the eigendecom-
position of the Gram matrix, which means that the algorithm is cubic in the
number of strings in the sample. However there are more efficient algorithms
which exploit the generally low rank of the Gram matrix in these applications
(incomplete Cholesky factorisation) which allow algorithms that are linear in the
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amount of data. In our experiments we found that the learning was reasonably
rapid on standard workstations for data sizes up to about 1000 strings, without
any optimisation.

5.1 Related Work

To the best of our knowledge, string kernels have not been used in this way
before. The idea of using linear equations to define languages was discussed in
(Salomaa, 2005), but the connection with string kernels has not been noted.

In terms of the results, there have been very few grammatical inference algo-
rithms that have worked with representations capable of learning context sen-
sitive languages, ignoring purely theoretical results that allow unbounded com-
putation. The only relevant results that we are familiar with is a body of work
using neural networks (Chalup & Blair, 1999). These papers show that under
a suitable, carefully tuned training regime, various types of neural network are
capable of learning some of these examples. However, these approaches do not
generalise well, and are hard to train.

The choice of kernel is clearly very important here: there are a number of
other kernels that can be devised that might be able to learn other classes of
languages. One of the surprising aspects of this approach is that even when the
induced feature space is of quite small dimension, the representational power of
the formalism is quite high.

Hyperplanes are in some sense the easiest sets of points to learn in a Hilbert
space. While they are effective for some languages, there are other languages,
such as {anbm | n > m > 0}, which do not form hyperplanes but rather half-
spaces. These of course can be learned using, for example, the generalised por-
trait algorithm. Similarly other structures such as manifolds, or clusters on hy-
perplanes, would be learnable using other techniques, and would define other
classes of languages.

6 Conclusion

We have put forward a new representation for languages, as hyperplanes in an
induced feature space, and shown that these languages can be efficiently learned
from positive data. We have demonstrated that this class of languages includes
linguistically interesting context sensitive languages that are not learnable with
current grammatical inference techniques.
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