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Abstract. This paper describes the construction of simulated SPECT
and MRI databases that account for realistic anatomical and functional
variability. The data is used as a gold-standard to evaluate four SPECT/
MRI similarity-based registration methods.

Simulation realism was accounted for using accurate physical models
of data generation and acquisition. MRI and SPECT simulations were
generated from three subjects to take into account inter-subject anatom-
ical variability. Functional SPECT data were computed from six func-
tional models of brain perfusion. Previous models of normal perfusion
and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE)
were considered to generate functional variability. We studied the im-
pact noise and intensity non-uniformity in MRI simulations and SPECT
scatter correction may have on registration accuracy.

We quantified the amount of registration error caused by anatomi-
cal and functional variability. Registration involving ictal data was less
accurate than registration involving normal data. MR intensity non-
uniformity was the main factor decreasing registration accuracy. The
proposed simulated database is promising to evaluate many functional
neuroimaging methods, involving MRI and SPECT data.

1 Introduction

Digital simulations of imaging modalities provide a way of generating data where
a gold-standard is available. They become widely used as evaluation datasets to
characterize and optimize the performance of image processing methods. Sim-
ulators accurately modelling physical properties of MRI, PET or SPECT data
acquisition have been proposed and validated [1, 2, 3]. Realistic simulations are
usually obtained from high-resolution human brain data, defining a spatial model
of brain anatomy. Such models were based on a single brain [4],[5]. Recently, to
take into-account inter-subject anatomical variability for MRI simulations, we
built anatomical models from multiple T1, T2 and PD-weighted MRI acquisi-
tions of 20 normal adults (submitted work). Reilhac et al. [3] used anatomical
MRI from 17 normal adults to simulate PET data.

For realistic simulations of functional data such as SPECT and PET, anatom-
ical models are required to define the attenuation map describing the attenuation
properties of head tissues and the activity map representing the 3D spatial dis-
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tribution of the radiotracer. Generating a realistic activity map usually requires
measurements on real data, as for instance averaged normal perfusion and aver-
aged ictal perfusion models [6]. Functional variability may be characterized by
exploring the structure of covarying areas among functional data issued from ho-
mogeneous populations. Principal component analysis [7, 8] and correspondence
analysis [9] have proved their ability to characterize normal perfusion and ictal
perfusion in patients with MTLE.

In this paper, we propose to adapt anatomical models previously developed
to simulate SPECT data. To simulate functional variability, three maps mim-
icking normal perfusion and three maps mimicking ictal perfusion in MTLE
were generated from the main modes of variation of the model proposed in [9].
For each subject and each functional model, MR simulated data were generated
with different noise and intensity non-uniformity levels. Simulated SPECT data
were reconstructed with and without scatter post-correction. These SPECT and
MRI simulated data-sets were used to evaluate four similarity-based registration
methods : mutual information (MI), normalized mutual information (NMI), L1
and L2 norm-based correlation ratios (CR).

2 Methods

2.1 MR Simulations

Anatomical Models. The method proposed in [10] was used to create anatom-
ical models from 20 healthy subjects. For each subject, we acquired four T1, T2
and PD-weighted scans. All images were corrected for intensity non-uniformity
[11], registered [12] and resampled in the average brain space [13], intensity nor-
malized and averaged to create averaged T1, T2 and PD-weighted volumes for
each subject. A fuzzy bayesian classification was used to classify voxel inten-
sities from T1, T2 and PD averaged volumes into grey matter, white matter,
cerebro-spinal fluid and fat. Automatically generated mask volumes were em-
ployed to separate brain from non-brain structures and to create the following
classes of the anatomical model: grey matter, white matter, cerebro-spinal fluid,
skull, bone marrow, dura, fat, muscles and skin.

Simulation. Each class of the anatomical model was described by its nuclear
magnetic resonance (NMR) relaxation properties. NMR signal intensities were
computed for all classes by feeling these NMR parameters into a discrete-event
Bloch equation in the MR simulator [1]. The simulator could model noise and
RF field inhomogeneity. T1-weighted MRI data were simulated at two levels of
noise, i.e., 3% (named ’mri-pn3’) and 9% (named ’mri-pn9’) standard deviation.
A high level of intensity non-uniformity (INU) (60%, named ’mri-rf60’) was also
simulated from data generated at 3% of noise. Scan parameters were similar
to those used during a clinical acquisition (3D spoiled gradient echo (GRE)
sequence, TR = 22ms, TE = 9.2ms, α = 30o, 1 mm isotropic voxel size).
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2.2 SPECT Simulations

Anatomical Models. For each subject, the grey matter of the MRI anatomical
models was subdivided to define the SPECT anatomical models. A digital atlas
was first mapped onto the grey matter class, using a non linear registration
algorithm to automatically extract the different grey matter regions [14]. These
grey matter regions were modified as the anatomical regions usually considered
by epilepsy specialists divide the temporal and frontal lobes into their posterior,
lateral, mesial and polar areas [6].

Attenuation and Activity Maps. The attenuation map was obtained by as-
signing an attenuation coefficient μ at the 140 keV energy emission of 99mTc to
each class of the anatomical model. Seven tissue types were considered : connec-
tive tissue, water, brain, bone, muscle, fat and blood. The model proposed in [9]
was used to generate realistic activity maps accounting for functional variability.
27 SPECT data from healthy subjects and 10 ictal SPECT from patients with
MTLE were first spatially and intensity normalized into an average brain space.
The digital atlas described above was then used to perform Volume of Interest
(VOI)-based measurements on each SPECT data. The structure of covariance
among these VOI measurements over all SPECT data was measured using cor-
respondence analysis. Five principal components accounting for 67.5% of total
variance were selected to model normal perfusion. Two principal components
accounting for 69.2% of total variance were considered for ictal perfusion. Three
healthy subjects and three patients with MTLE were first randomly selected.
Six activity maps mimicking normal perfusion (N1, N2, N3) and ictal perfusion
in MTLE (I1, I2, I3) were then generated by projecting the VOI measurements
of each subject on the corresponding selected principal components. This pro-
jection aims at removing measurement noise in the data in order to account only
for the main modes of perfusion variability.

Simulation and Reconstruction. Using attenuation and activity maps,
Monte Carlo simulations were performed using the SimSET1 simulator [15]. Pro-
jections were simulated using a 20% energy window centred on 140 keV (126-154
keV) and a Compton window (111-125 keV). Attenuation and Compton scatter
were modelled through Monte Carlo methods. The collimator and gamma cam-
era responses were modelled through analytical models. To assess the impact of
scatter correction on registration accuracy, Jaszczak scatter correction was ap-
plied by subtracting the simulated projections of the Compton window from the
simulated projections of the 20 % energy window centred on 140 keV. All projec-
tions were reconstructed by filtered backprojection using a ramp filter (Nyquist
frequency cutoff). The reconstructed data (4.51 mm isotropic voxel size) were
post-filtered with a 3D Gaussian filtering (FWHM = 8mm).

1 Simulation of Emission Tomography (SimSET) package,
http : //depts.washington.edu/ simset/html/simset main.html
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(A) (B) (C) (D)

Fig. 1. For the first subject,(A) anatomical model used for MRI simulation, (B) grey
matter subdivided-model used for SPECT simulation, (C) an activity map modelling
normal perfusion and (D) an attenuation map obtained from this model

2.3 SPECT/MRI Registration Evaluation

Registration Methods. These simulated data were used to evaluate four sta-
tistical similarity-based SPECT/MRI registration methods: mutual information
(MI), normalized mutual information (NMI), L1 and L2 norm-based correla-
tion ratios (CRL1 and CRL2). Each registration method was implemented as
proposed by [16].

Evaluation. We studied the impact anatomical and functional variabilities gen-
erated by the proposed simulated data have on registration performance. For each
subject and for each functional model, we computed registrations between three
simulated MRI data (two with different noise levels and one with INU) and two
SPECT reconstructions (with and without photon scatter correction). Table 1
summarize the different simulations contexts. For each subject, the three simu-
lated MR volumes are registered to twelve SPECT volumes using four different
similarity measures.

Since the simulated SPECT data was perfectly aligned with simulated MRI
data by construction, we applied a known geometrical transformation to the sim-
ulated MRI data to generate mis-aligned data. For each simulation context, 20
known transformations were generated by randomly sampling a six parameters
vector using a Gaussian distribution (mean = 0, standard deviation = 10 mm
or o). Comparing the known geometrical transformation to the resulting com-
puted transformation, local target registration errors (TRE) were estimated on
200 points uniformly distributed within the brain of each subject. The root mean
square value (RMS) of the local errors distribution was estimated to characterize
the spatial distribution of TRE within the brain.

3 Results

3.1 MRI and SPECT Simulations

For the first subject, Fig. 1 shows transverse slices of the anatomical model used
for MRI simulation, the grey matter subdivided-model used for SPECT simula-
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Table 1. Simulation contexts explored by SPECT/MRI registration evaluation

AnatomicalFunctional MRI SPECT Registration
model model data quality data quality methods
3 subjects - 3 normal models- 3% noise - scatter correction - CRL1

- 3 ictal models - 9% noise - no scatter correction - CRL2
- 3% noise and INU - MI

- NMI

(A) (B)

Fig. 2. For the first subject, activity maps and simulated spect (A) with normal per-
fusion N1 and (B) with ictal perfusion I1

(A) (B) (C)

Fig. 3. For the first subject, simulated MRI (A) with 3% noise, (B) with 9% noise and
(C) with 3% noise and 60% intensity non-uniformity

tion, a normal activity map and an attenuation map obtained from this model.
To illustrate functional variability, two activity maps and resulting simulated
SPECT are shown Fig. 2. Fig. 3 shows MRI simulated data of the same subject
for different noise levels and INU.

3.2 Registration Evaluation

Distribution of registration RMS errors (in mm) are summarized using boxplot
distributions in Fig. 4. Whereas increasing levels of noise in MRI data had slight
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Fig. 4. Distributions of SPECT/MRI registration errors (RMS in mm) for different
MRI data “quality”: 3% noise (mri-pn3), 9% noise (mri-pn9) and 3% noise with in-
tensity non-uniformity (mri-rf60). Results obtained for all parameters omitted in the
captions were pooled together in the boxplot representations. Horizontal line indicates
SPECT voxel size at 4.51 mm

impact on registration accuracy, generating high intensity non-uniformity level
on MRI data (60%) clearly decreased registration accuracy (Fig. 4(a) and (c)).
We showed also an impact of anatomical variability on registration performance
(Fig. 4(a)). Analysis of variance confirms a significant effect of the subjects and
MRI data quality on registration accuracy (F=3834, R2

adjust=0.82, p <0.001).
We found no effect of scatter post-correction of SPECT data on registration
accuracy (results not shown).

We observed a significant effect of the clinical context (ictal vs normal per-
fusion) on registration accuracy (analysis of variance, F=232.5, R2

adjust=0.21,
p <0.001). Registrations involving normal SPECT simulations were significantly
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more accurate than registrations involving ictal data (Fig. 4(b)). Although small
variations due to functional variability were observed within each perfusion group
(ictal or normal)(Fig. 4(b)), main trends concerning the loss of registration accu-
racy in pathological condition were still present. In presence of INU, MI and NMI
based registrations were slightly more accurate than CRL1 and CRL2 methods
(Fig. 4(c)). The opposite situation was observed when considering MRI simula-
tions without INU.

4 Discussion and Conclusion

The simulation database computed for this study enables one to take into ac-
count both anatomical variability, using anatomical models from three subjects,
and functional variability, considering six functional models (ictal and normal).
Using fully controlled simulated data, the impact of many data quality param-
eters could be studied, such as noise and INU levels in MRI data, or SPECT
data scatter correction. Accounting for anatomical and functional variability in
simulated databases is essential for validation of statistical analysis methods, as
for instance epileptogenic focus detection methods or inter-subject group anal-
ysis methods. We plan to make these images publicly available on the internet
for comparison of different methods.

Assessing the realism of the simulations is an important and difficult issue.
All simulated data rely on techniques reproducing accurately the physics of data
generation and acquisition [1, 2]. To evaluate the realism of simulated data, pre-
vious studies reported comparison between mean intensities measurements be-
tween real and simulated SPECT data [6]. From the 20 subjects acquired for this
project, voxel-based group comparison between simulated and real T1-weighted
data confirmed the realism of MRI simulations (submitted work). We plan to
use a similar approach to assess the realism of our simulated SPECT data. Note
that the realism of the method used to characterize perfusion variability should
also be assessed, using a leaving-one-out evaluation procedure for instance [7].

The SPECT/MRI registrations evaluated in this study illustrate an important
application of SPECT and MRI simulated databases. We quantified the amount
of registration error variability caused by simulated anatomical and functional
variability. Our results were in agreement with [16], showing that registration of
pathological data was less accurate than registration of normal data, due to an in-
crease in intensity dissimilarity between data. The major result was the important
decrease of registration accuracy due to a high intensity non-uniformity on MRI
data, which has never been studied before in the context of SPECT/MRI regis-
tration. However, the effect of MRI intensity non-uniformity was demonstrated
for T1-T2 NMI registration [17]. The proposed framework is ideal to quantify the
impact of several INU levels on registration accuracy or to quantify if correction
methods [11] may improve SPECT/MRI registration accuracy.

We are currently working on the extension of this simulated database. We plan
to use the 20 anatomical models already available, as well as more perfusion mod-
els, using random sampling of activity values within the main modes of variation.
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