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Abstract. The new algorithmic technique which allow higher efficiency
in the precise calculation of the reliability of an undirected graph with
absolutely reliable nodes and unreliable edges is considered in this pa-
per. As graph’s reliability we mean its probabilistic connectivity. The
proposed technique is based on the reduction of the dimension of a cal-
culated graph by considering its node’s cuts. Comprehensive computer
simulation results show the advantages of the proposed algorithms, that
the calculation time decreases significantly in comparison with existent
methods.

1 Introduction

The task of calculating or estimating the probability of whether the network
is connected (often referred to as its reliability, is the subject of much research
due to its significance in a lot of applications, communication networks included.
The problem is known to be NP-hard irrelative of whether the unreliable edges
or nodes or both are considered. Most explored is the case of absolutely reliable
nodes and unreliable edges that corresponds to real networks in which the re-
liability of nodes is much higher than that of edges. The transport and radio
networks are good examples. Usually the estimations of a network reliability are
considered. Yet we can conduct the exact calculation of reliability for networks
with dimension of a practical interest by taking into consideration some special
features of real network structures and based on modern high-speed computers.
In [1] the technique was proposed that allows faster calculation based on reduc-
tion of simple chains and/or branching by them. This technique, in its turn, is
based on the well-known factoring (branching) algorithm (often called Moore-
Shannon algorithm [2]) uses branching on the alternative states for an arbitrary
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edge. Some good approaches are proposed in [3,4] but, as it is shown in [1], it
is possible to improve them. In this paper we present new approach to reducing
the task dimension by considering 2-node cuts. The proper theorems are proven
in this paper to support the proposed methods.

The rest of the paper is organized as follows: in section 2 the basic notations
and definitions are presented. In section 3 we prove the basic theorems while
section 4 is devoted to computer algorithm and experimental results. Section 5
is the brief conclusion.

2 Basic Notations and Definitions

We denote an undirected graph as G = (X, U), where X is a set of nodes and
U – a set of edges of G. For each edge ui ∈ U the probability of its existence pi

is given. Further on we refer to this probability as edge reliability.
The simple event is an individual realization of a graph that is obtained by

checking existence or non-existence of every edge.
The probability of simple event is obviously equal to

P (E) =
∏

i∈Ex

pi

∏

i/∈Ex

(1 − pi), (1)

where Ex is the set of numbers of existent edges.
An arbitrary event (union of some simple events) we will consider as successful

if all graphs that are correspondent to these simple events are connected that is
that all nodes can be connected by existent edges.

Reliability of graph G, RP (G), is the probability of graph G being connected
that is the probability of event that is the union of all successful events and of
them only.

Let {x, y} be an arbitrary 2-node cut in G which divides it into 2 subgraphs
G1 and G2 as is shown in Fig. 1. Note that for any fixed cut {x, y} G1 and G2

are not defined unambiguously in general case. For example, if there is an edge
between x and y then it can belongs as to G1 as to G2.

We denote graphs that are obtained from G1 and G2 by contracting nodes
x and y as G′

1 and G′
2, correspondingly. Let z be the node that is obtained by

contracting nodes x and y.

3 Using Node Cuts for Reducing the Task Dimension

3.1 Reliability of Graph That Is Divided into 2 Components by
2-Node Cut

Here we prove the main theorem that correlates the reliability of a graph G with
reliabilities of graphs G1, G′

1, G2, and G′
2.
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Fig. 1. Components of a graph G and auxiliary graphs

Theorem 1. The following equation is true for any graph G that is divided into
2 components G1 and G2 by 2-node cut:

RP (G) = RP (G1) ·
(
RP (G′

2) − RP (G2)
)

+ (2)

RP (G2) ·
(
RP (G′

1) − RP (G1)
)

+ RP (G1) · RP (G2).

Proof. Let us denote:

A — union of all simple events that correspond to connected G1 and G′
2 and

disconnected G2.
B — union of all simple events that correspond to connected G2 and G′

1 and
disconnected G1.

C — union of all simple events that correspond to connected G1 and G2.
S — union of all simple events that correspond to connected G.

First we need prove the following statements:

1) Events A, B, and C are pairwise antithetical, that is A ∩ B = A ∩ C =
B ∩ C = ∅.

2) A ∪ B ∪ C = S.

The truth of the first statement is clear from the definitions of A,B, and C.
Let us prove the second statement.

First we show the inclusion A ⊆ S. Let us consider an arbitrary simple event
in A such that G1 and G′

2 are connected and G2 is disconnected.
Let x1 and x2 be two arbitrary nodes of G2. G′

2 is connected so there is at
least one path from x1 to z and at least one path from x2 to z in G′

2. Thus there
are paths from x1 to x or y and from x2 to x or y in G2. And if there exist paths
from x1 to x and from x2 to x or from x1 to y and from x2 to y, then, obviously,
x1 and x2 are connected by a path in G2.

Now we will discuss the case when there are paths from x1 and x2 to different
nodes (x or y). Without loss of generality we can assume that there are paths
from x1 to x and from x2 to y. G1 is connected so there exists a path from x
to y in G1 and, consequently, there exists a path from x1 to x2 through nodes x
and y (see Fig.2 a)).
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Fig. 2. Case of connected G1 and G′
2 and disconnected G2

If x1 is in G1 and x2 is in G2 then x1 is connected to both x and y and x2 is
connected to x or to y but not to both. Let ut assume that x2 is connected to x
for certainty. Thus x1 and x2 are connected by a path in G (see Fig.2 b)).

Thus any arbitrary pair of nodes in G are connected by at least one path in
the case of event A and so A ⊆ S.

The inclusion B ⊆ S is proved similar to A ⊆ S.
The inclusion C ⊆ S is clear because a connected graph corresponds to any

simple event in C. Thus A ∪ B ∪ C ⊆ S.
Now we transfer to proving the reverse inclusion, that is A ∪ B ∪ C ⊇ S.
Let us consider an arbitrary simple event E in S, that is some partial realiza-

tion of G that is connected.
We need in three additional events:

D1 — union of all simple events that corresponds to connected G1 and discon-
nected G′

2.
D2 — union of all simple events that corresponds to connected G2 and discon-

nected G′
1.

D — union of all simple events that corresponds to disconnected G1 and dis-
connected G2.

It is clear that A ∪ B ∪ C ∪ D1 ∪ D2 ∪D = Ω where Ω is the complete event
space. Note that events D1, D2 and D are obviously pairwise antithetical.

Let E /∈ A∪B∪C. Then, according to the statement above, E ∈ D1∪D2∪D.
Now we consider the cases E ∈ D1, E ∈ D2, and E ∈ D separately.

1. E ∈ D. In this case G1 and G2 are disconnected so G is disconnected also.
We have the contradiction because E is a connected realization of G.

2. E ∈ D1. Let x1 and x2 be a pair of disconnected nodes in G′
2 (such pair

exists according to the definition of D1). Specifically there is no path from
x1 to x2 through z and this node corresponds to a path through connected
G1. Consequently they are disconnected in G. We have contradiction again.

3. E ∈ D2. The contradiction is obtained similar to the case above.
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Thus E /∈ D1 ∪ D2 ∪D so E ∈ A ∪B ∪C and, consequently, S ⊆ A ∪B ∪C.
Then from A ∪ B ∪ C ⊆ S we obtain A ∪ B ∪ C = S.

Now according to statements 1) and 2) we obtain R(G) = P (S) = P (A) +
P (B) + P (C).

The event C we can represent as intersection of two events which corresponds
to connectivity of G1 and connectivity of G2, correspondingly. These events are
obviously independent. Thus P (C) = R(G1) · R(G2).

The event A = A1 ∩ A2, where A1 corresponds to connectivity of G1 and A2

corresponds to connectivity of G′
2 and non-connectivity of G2. These events are

also independent so P (A) = P (A1) · P (A2).
Ii is clear that P (A1) = R(G1). For obtaining P (A2) we present A2 as inter-

section of events A21 and A22, where A21 corresponds to non-connectivity of G2

and A22 corresponds to connectivity of G′
2. Events A21 and A22 are dependent

ones so P (A2) �= P (A21) · P (A22). Let us derive the probability of A2 in the
following way.

By definition of A21 the event A21 corresponds to connectivity of G2 thus
A21 ⊆ A22 and P (A21) = R(G2). We have the obvious equivalence: A22 ∩A21 =
A22\A21. From this we obtain

P (A2) = P (A21 ∩ A22) = P (A22\A21). (3)

From A21 ⊆ A22, we have

P (A2) = P (A22\A21) = P (A22) − P (A21) = R(G′
2) − R(G2). (4)

So

P (A) = P (A1) · P (A2) = R(G1) · (R(G′
2) − R(G2)). (5)

In similar way we obtain that

P (B) = R(G2) · (R(G′
1) − R(G1)). (6)

As a result we have

R(G) = P (A) + P (B) + P (C) = R(G1) · (R(G′
2) − R(G2)) + (7)

R(G2) · (R(G′
1) − R(G1)) + R(G1) · R(G2),

just as expected. 	


3.2 Reliability of a Graph That Is Divided into k Components by
2-Node Cut

Now let us consider the case when 2-node cut divides graph G into k subgraphs
G1, G2, . . ., Gk, k > 2.

First we need define a intermediate function Si
k. Let us have 2k numbers

p1, . . . , pk, p′1, . . . , p′k. Then Si
k is equal to a sum of all possible productions of

these numbers that satisfy the following restrictions:
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1) each item has k co-factors;
2) each item has no co-factors with equal indexes;
3) each item has exactly i co-factors with stroke.

Thus

S0
k = p1p2p3 . . . pk, (8)

S1
k = p′1p2p3 . . . pk + p1p

′
2p3 . . . pk + . . . + p1p2p3 . . . p′k,

S2
k = p′1p

′
2p3 . . . pk + p′1p2p

′
3 . . . pk + . . . + p1p2p3 . . . p′k−1p

′
k,

. . .

Sk−1
k = p1p

′
2p

′
3 . . . p′k + p′1p2p

′
3 . . . p′k + . . . + p′1p

′
2p

′
3 . . . p′k−1pk.

As pi and p′i we consider reliabilities of Gi and G′
i where G′

i is obtained from
Gi by contracting nodes x and y.

Theorem 2. The following equation is true:

R(G) =
k−1∑

i=0

(−1)k−i+1Si
k (9)

Proof. We prove the theorem by induction.
1. For k = 2 we obtain the equation (2) that is proved to be true in previous

consideration.
2. Let (9) be true for some k. Let us prove it for k + 1.
Let p0 be the reliability of G1 ∪ . . . ∪ Gk and pk+1 be the reliability of Gk+1.

From (2) we have

R(G) = pk+1(p′0 − p0) + p0(p′k+1 − pk+1) + p0pk+1 = (10)
pk+1p

′
0 + p′k+1p0 − p0pk+1.

But, by the assumption of induction

p0 =
k−1∑

i=0

(−1)k−i+1Si
k, (11)

and, obviously, p′0 = p′1 . . . p′k. Thus

R(G) = p′1 . . . p′kpk+1 + p0(p′k+1 − pk+1). (12)

By simple substitution we can obtain the following property of Si
k:

Si
k+1 = Si−1

k p′k+1 + Si
kpk+1, 0 < i < k. (13)

For i=0 we have S0
k+1 =S0

kpk+1 and for i=1 Sk
k+1 = Sk−1

k p′k+1+p′1p
′
2 . . . p′kpk+1.
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Thus for odd k we have

k∑

i=0

(−1)k−i+2Si
k+1 = −S0

k+1 + S1
k+1 − . . . − Sk−1

k+1 + Sk
k+1 =

−S0
kpk+1 + S0

kp′k+1 + S1
kp + . . . − Sk−1

k pk+1 + Sk−1
k p′k+1 + p′1p

′
2 . . . p′kpk+1 =

(p′k+1 − pk+1)(S0
k − S1

k + S2
k − . . . + Sk−1

k ) + p′1p
′
2 . . . p′kpk+1 =

(p′k+1 − pk+1)
k−1∑

i=0

(−1)k−i+1Si
k + p′1p

′
2 . . . p′kpk+1 =

(p′k+1 − pk+1)p0 + p′1p
′
2 . . . p′kpk+1 = R(G),

just as expected. Case of even k is proved in similar way. 	


4 Computational Algorithm and Case Studies

Based on the presented results we propose the modification of the algorithm
for strict calculation of the graph reliability that is discussed in [1]. Briefly this
modification looks as follows (we assume that a graph under consideration has
connected structure).

Step 0 (preliminary). Remove all attached trees (if exist) from a graph, ω is
the production of reliabilities of all removed edges.

Step 1. Substitute all simple chains (if exist) by edges according to formulas
from [1], ν is the corresponding factor (if there are no simple chains in a
graph then ν = 1).

Step 2. Decompose a graph into k blocks (if decomposition is impossible, then

k=1 and the only block is a graph itself) Gi. R(G) = ν
k∏

i=1

R(Gi). For each

Gi go to next step.(if possible)
Step 3. If graph is disconnected or allows direct computation then return 0 or

calculated value, correspondingly. Otherwise go to next step.
Step 4. If there is a 2-node cut in a graph then use equations (2) or (9) for

recursion. Otherwise go to next step.
Step 5. Choose an arbitrary edge u with reliability ε for recursive branching:

R(G) = ν[εR(G∗) + (1− ε)R(G\e)]. Here G∗ is a graph G contracted by an
edge u. Recursion starts from the Step 1.

Step 6 (final). Calculated value is multiplied by ω.

For case studies we use random graphs obtained according the algorithms from
[5]. We have calculated the reliability of 100 random networks which structures
that include 5 subgraphs corresponding to LANs and 5 additional edges for their
interconnection. Each subgraph has 40 nodes and 60 edges thus each testing
graph has 200 nodes and 305 edges. For experiments we have used the computer
with the processor Intel Celeron 1000 MHz, RAM=320Mb. Average time for
a random graph is about 80 sec while the previous algorithm that in [1] was
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proven to be fastest at that time gives no results in an hour. At the same time
the proposed algorithm is slightly slower for complete graphs (for K9 we have
47 sec and 47.6 sec correspondingly) as a result of unfruitful tests on the Step 3.
Thus our new algorithm has higher efficiency for graphs with 2-node cuts initially
or when a graph has low density and do 2-node cuts are obtained often enough
during the branching process.

5 Conclusion

In this paper we have shown how to use 2-node cuts for speeding up the process
of obtaining the exact reliability of networks with reliable nodes and unreliable
edges. Together with previous technique based on use of simple chains it allows
calculation of reliability of LANs in reasonable time. We think that our method
can be used for topological optimization of networks using the method proposed
in [6] in which the calculation of a graph reliability is one of the main subgoals.
In the nearest future we will present results concerning case of multiple 2-node
cuts and of cuts of higher capacity. Future researches can concern the exact
calculation of reliability for networks with unreliable nodes also.
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