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Abstract. The advance of Internet 2 and the proliferation of switches
and routers with level three functionalities made the multicast one of
the most feasible video streaming delivering techniques for the near fu-
ture. Assuming this to be true, this study addressed the over-load sit-
uation that a streaming server could suffer due to client requests. As a
solution, we proposed new multicast delivery scheme that allows every
active client to collaborate with the server regardless of the video that
they are watching, alleviating server loads, and therefore server resource
requirements. The solution combined the multicast delivery scheme and
client-side buffer collaboration in order to decentralize the delivery pro-
cess. The new video delivering scheme was designed as two separate
policies: the first policy used client collaboration to deliver first part of
videos and the second policy could merge two or more multicast channels
using distributed collaboration between a group of clients. Experimental
results show that this scheme is better than previous schemes in terms
of resource requirements and scalability.

1 Introduction

The high increase in the commercial use of the Internet (distance learning, Video
on Demand (VoD) and digital video libraries) has generated a substantial growth
in the demand for video streaming systems. In video streaming environments,
users request the videos they desire and a server delivers the requested video
information; allocating, using the most simple delivery technique, a dedicated
server unicast channel for each video request. Even though the unicast delivery
scheme is easy to implement, it is excessively expensive and there is a lack of
scalability.

In order to reduce the cost of video-delivery and attain high server scalabil-
ity, three complementary research approaches have been investigated: (1) server
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transmission schemes using multicast, this strategy allows users to share server
and network bandwidth to reduce the individual service cost; (2) video stream-
ing technique with application layer multicast enables multicast transmission
schemes beyond a local area network, assuming only IP unicast at the network
layer; and (3) proxy caching [6], enabling high scalability for clients dispersed
across a wide-area. The main focus of this study is the design of multicast de-
livery in order to reduce the individual service cost, specially, we proposed a
delivery scheme that is able to offer true VoD services[10].

Sophisticated video delivery techniques based on multicast have appeared
such as Batching [4], Patching [1][2], Adaptive Piggybacking [3], Merging[5],
Chaining [7] and Cooperative Video Cache(CVC)[8].

With a Batching technique, video requests for the same video that are sub-
mitted in the same short interval time are served by a single multicast channel.
Clients suffer a certain period of waiting time and the average length of waiting
time depends on the policy of selecting the clients to serve with the first available
channel. Due to this waiting time, a Batching approach only provides near-VoD
service. A Batching approach is also called static multicast since late coming
requests are not allowed to join any already on-going multicast channel. With
Patching, however, clients are dynamically assigned to join multicast channels.
Since late coming clients miss part of the video information, a separate unicast
channel, called a patch stream, is needed to deliver the first part of the video.
The Patching approach assumes that clients can simultaneously download two
streams and has a local buffer, capable of saving t minutes of video. While a
client is watching a video from the patch stream, the video information arriving
from multicast channels is buffered. Even though the Patching policy provides
true-VoD service, the server resource requirement increases depending on the
request arrival frequency due to unicast channels. Furthermore, a request is only
able to join a multicast channel if the difference between the request arrival time
and the multicast channel start-time is lower than t.

Like Patching, Adaptive Piggybacking and Merging are also dynamic multi-
cast approaches. In the Piggybacking policy, the server slows down and speeds
up the delivery rate of two consecutive multicast channels in order to merge
two multicast channels into one. The number of channels that Piggybacking can
merge is limited by the fact that less than 5% adjustment of the delivery rate is
allowed, in order to preserve the display quality that clients receive. The Merging
policy, however, does not change the display quality. Two multicast channels are
merged using the client buffer. In the Merging policy, while clients are playing
the video, they try to buffer video information from a previous multicast chan-
nel. This policy can only merge channels that are started in a period of time no
longer than the length of video information that each client is able to save in
their buffer.

The main ideas behind Chaining and CVC are fairly similar. Both policies are
based on the creation of a delivery chain in which video information is forwarded
from one client to another. With these policies, a new client receives the video
from an existing chain and does not consume any server bandwidth. However,
delivery chains could only be formed if the interarrival times of client requests
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are short, limited by the size of each individual client’s buffer. Furthermore, only
clients that are watching the same video can take part in the formation of the
chain.

In this paper, we propose a new delivery technique called Dynamic Dis-
tributed Collaborative Merging (DDCM). The DDCM technique is based on
the peer-to-peer paradigm and allows every active client to collaborate with the
server regardless of the video that they are watching. The client collaborations
are performed by two complementary delivery policies. Under the first policy,
while successive incoming requests are allowed to join an existing multicast chan-
nel, the missed video information (patch stream) is delivered by another client
who is playing the same video. Unlike the Patching policy, the patch stream does
not consume the server’s resources. The aim of the second policy is to dynam-
ically merge multicast channels using distributed buffers. More than one client
of different videos could be used in the merging process of two channels. The
merge policy is able to merge multicast channels regardless of the time between
their start-times. The merge policy enables clients of unpopular videos to help
the server to merge the channels of more popular videos, and vice versa.

The rest of the paper is organized as follows: in section 2, we show the key
ideas behind DDCM. Performance evaluation is shown in section 3. In section
4, we indicate the main conclusions of our results and future work is explained
in the final section.

2 Dynamic Distributed Collaborative Merging Scheme

In the delivery scheme design, we assume that clients are able to hold two sym-
metric channels. We assume that video information is encoded with Constant
Bitrate (CBR) and that each client channel is able to receive/send one video
stream. We refer to network unicast channel that delivers the first part of a
video as patch stream and the multicast channel that delivers the information
for the complete video as complete stream.

The DDCM delivery scheme is designed as two separate policies: 1) Patch
Stream Manager (PSM) whose main role is to deliver patch streams using client
collaborations. 2) Complete Stream Manager (CSM). The main function of this
second policy is to try to merge two or more complete streams into one.

2.1 Patch Stream Manager Design

When the first request from client Ci arrives time ti, the server opens a new
complete stream(M1) for the client. When a second request from client Ci+1

arrives in time ti+1, the server decides whether or not the client can be served
by using a previous complete stream (M1). In order to serve by using a previous
complete stream, client(Ci+1) must have enough buffer to save more than (ti+1−
ti) seconds of video information from the complete stream. If not, the server will
open a new complete channel. In the other case, a patch stream is needed to
send video information from 0 to (ti+1 − ti). The remaining video information
((ti+1 − ti) to the end) will be sent by the previous complete stream.
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For each new patch stream, the PSM policy searches for an active client that
has the first part of the video in their local buffer. In such a case, a collaborative
client will open a patch stream and send the first part of the video. Client Ci+1

will also join the previous multicast complete stream. Should there be no such
client, the server starts a new patch stream using server bandwidth.

Fig 1 shows the delivery process following PSM for 6 clients. Each client has 3
minutes of buffer and client requests arrive at minutes 1, 2, 3, 5, 6, and 7. Under
the clients name, we indicate the length of buffer that each client is dedicated for
the collaboration. For example, C3’s collaboration buffer is 1 minute, while C2
collaborates with a buffer of 2 minutes. These values depend on the length of the
patch stream that the client needs for the delivery process. In the case of C1, no
patch stream is needed, so the full buffer (3 minutes) is used for collaboration.
In order to know the buffer size that each client dedicates to collaboration, each
client sends a control message to the server when the client has filled the buffer
with the first part of video.

Fig. 1. Patch Stream Manager

Fig 1 shows that C2 and C3 are served using one multicast channel and
2 patch streams using server bandwidth. In the case of C5 and C6, the patch
streams are delivered by C3 and C2 respectively. As we can see in Fig 1, the
PSM policy is capable to deliver patch streams without consuming the server’s
bandwidth after minute 5.

The more clients are accepted by the server, the more client collaborations
will be produced with PSM policy. This characteristic makes the PSM especially
suitable as a delivery scheme for highly demanded video where a lot of patch
streams are needed. However, after several minutes, the server has more than
one client that is able to serve the same patch stream. This redundancy implies
poor client resource utilization since many of clients will not be involved in the
collaboration mechanism of PSM.

2.2 Complete Stream Manager Design

The CSM’s aim is to merge the existing complete streams. Once a complete
stream is merged into another, the complete stream will not consume any server
resources. Since complete streams are usually long, and therefore demand most of
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the server’s resources, the CSM efficiently replaces the server resource demand
with client collaborations. The CSM scheme achieves a high degree of client
resource utilization since almost every client is involved in the collaboration
mechanism regardless of the video that they are watching.

Given two multicast channels (M1 and M2), the key idea of CSM is that
a group of clients form a collaborative buffer to merge M2 with M1. Then,
the multicasting channel (M2) from the server is replaced by a channel (M21)
from the collaborative clients. Since more than one client could be used in the
merging process, the CSM is able to merge multicast channels regardless of the
time between their start-times.

Fig 2 shows the collaborative buffer created between clients C1, C2, C3 and
C6 that collaborate by providing 3, 2, 1 and 1 minutes of buffer respectively.
A total of 7 minutes of video information could be saved in this collaborative
buffer.

Fig. 2. Complete Stream Manager

Each client of the collaborative group successively saves video information
from M1 and then delivers the information to M2 when clients of this channel
need it. Fig 3 shows the delivery process of two multicasting channels(M1 and
M2). The M2 was started 4 minutes(S) later than M1. The merging process
starts when block C and 8 are being delivered to M1 and M2 respectively.
Channel M2 is closed in time 4, and a new channel M21 is opened.

In order to know what information each client has to save, the video infor-
mation of M2 is divided into blocks and enumerated. The CSM decides the list
of blocks that a client has to save. For example, C1 saves blocks [C,D,E], [J,K,L]
and so on. After saving the blocks [C,D,E] in time 0-3, C1 waits 1 minute before
starting to send the video information to M21. Block E is sent to M21 in time
6 and, after that, the C1 starts to save blocks [J,K,L].

Once the channel M2 is merged with M1, the CSM has to guarantee that
while a client is delivering video blocks, there are enough other clients that are
saving other video blocks being delivered by the server with M1. Since, each
client can only use one stream in the collaboration, either to deliver or to save
video information, the two processes (delivery and saving) have to be performed
separately. In the case of Fig 3, while C4 is delivering block I, it should not
receive any video information except the video that C4 is playing.
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Fig. 3. CSM delivery process

2.3 Client Collaboration Group Construction Process

In the merging process, two parameters are determined by the CSM: 1)The
client collaboration (BCi) that is the size of buffer of each client Ci that is
to be dedicated to the formation of the collaborative buffer. 2) Accumulated
buffer size that is the total size of the collaborative buffer. The value of these
two parameters is determined under 2 constraints: a) A client cannot use more
buffer than it has. b) A client only use one channel in the collaboration process.

Constraint a) is trivial and requires no further explanation. We established
two conditions for the CSM group construction process in order to satisfy con-
straint b). Supposing that the CSM is interested in merging two channels that
are separated into S units of time. We can formulate these 2 conditions as fol-
lows: Given a collaboration group CG of clients {C1, C2, ..., Cn} 1 in which the
buffer collaborations for each client are {BC1 , BC2 , ..., BCn}, the CSM has to
satisfy:

1. Maximum collaboration: the collaboration (BCi) of a client Ci can not be
greater than the value of S.

BCi ≤ S for all Ci ∈ CG (1)

2. Minimum accumulated buffer size: The total accumulated buffer size(BL)
has to be bigger or equal (S + max {BCi}).( ∑

Ci∈CG

BCi = BL

)
≥ S + max {BCi} for all Ci ∈ CG (2)

Satisfying conditions (1) and (2), unconditioned by S, we get:

BL − BCi ≥ S ≥ BCi for all Ci ∈ CG (3)
1 In the selection of clients, local network connection distance is considered in order

to minimize the local network overhead.
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The condition (3) indicates that the accumulated buffer size of all groups
except for a client Ci is always bigger than Ci’s collaboration(BCi) and is bigger
than S. This means that the CSM guarantees that while a client Ci is sending
video information there are enough other clients saving video information from
the earlier multicast channel. Furthermore, while a client Ci is saving video
information, there are enough other clients sending information. Since a client
does not to have save information while it is sending, or vice versa, the CSM
guarantees that in the collaboration process, each client will not use up more than
one channel, leaving another one for playback. In this way, the CSM constructs
the collaboration group in accordance with the following steps:

Step 1: The CSM calculates S of every pair of channels which could be merged
and chooses the pair with the smallest S as channels to be merged.

Step 2: Satisfying conditions (2), the DDCM forms a list of clients {C1, C2, ...,
Cn}. In this step, the maximum collaboration of each client Ci is limited by
the condition (1).

Step 3: Blocks of video (V bj) that a client Ci has to save and deliver are
determined by: (V bj − StartBlock) mod BL ≥ ∑i−1

m=1 BCm and (V bj −
StartBlock) mod BL <

∑i
m=1 BCm where BL =

∑n
i=1 BCi (the total ac-

cumulated size of collaborative buffer), BCi is the collaboration of client Ci

and StartBlock is the block number which indicates the starting point of
the merging process.

3 Performance Evaluation

We have used our prototype to evaluate the performance of the DDCM. There
are three key questions that we are interested in addressing: 1) how much re-
duction in server bandwidth could be achieved using DDCM in accordance with
the video’s popularity? 2) How much server bandwidth is required using DDCM
when the system is offering more than one video? 3) How could the client col-
laboration following the DDCM scheme help in a high-demand situation?

The DDCM is implemented in our prototype using C++ language under
Linux system. We have implemented the entire necessary client feature in a Xine
player plug-in[9]. In the experimentation, clients are emulated using a cluster of
PCs and client requests are generated following a Poisson(Pk = λk

k! ·e−λ)process.
The Zips-like(Px = 1

xz·
∑Sv

i=1
1

iz

) distribution is used in order to assign the pop-

ularity of videos. We assume that the video length is 90 minutes and clients is
able to save up to 5 minutes of video information.

3.1 Server Bandwidth Requirement According to Video Popularity

Fig 4 shows the server bandwidth requirement, in number of streams, using
Patching, merging, PSM and DDCM(PSM+CSM). We perform this experiment
under various request rates, which are normalized as the number of requests ar-
riving during 90 minutes (video length). The resource requirement of a Merging
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Fig. 4. Server Bandwidth Requirement for one video

policy is determined by results from [5]. We should point out that no buffer con-
straint is considered in Merging policy and, in a real case scenario, the Merging
policy could only merge two streams separated by no more than client buffer
length, so the performance will not be as good. The key observations from Fig
4 are:

1) Using Patching policy, the bandwidth requirement increases with more
requests. This makes the Patching policy unsuitable for a high demand video
service.

2) Under PSM, clients can collaborate with the server to deliver patch
streams. Regardless of the interarrival time, the server does not need any more
than 18 streams to serve a video. This makes the PSM more suitable than a
Patching policy for serving popular videos.

3) The main virtue of the DDCM(PSM+CSM) could be summarised as,
’more request less server bandwidth’. As we can see in Fig 4, the service band-
width requirement of the DDCM increases up to 12 streams. Up to this point,
there are not so many client resources that can be used to merge complete
streams. As soon as a critical mass of client resources are collected, the CSM
tries to merge consecutive streams and the bandwidth requirement drastically
drops to 1-2 streams per video. Compared with a Patching policy, the
DDCM(PSM+CSM) is able to achieve a resource reduction of 73% (4 vs. 15
streams) if there are 30 requests during 90 minutes (one request per 3 minutes).
Reduction of 92.5% (2 vs. 27 streams) is achieved when there are 360 requests.
Comparing with Merging policy, the DDCM(PSM+CSM) does not reduce the
required resource until 30 requests. However, with 180-720 requests, the Merging
policy gets closer to PSM (10-14 streams) and the DDCM(PSM+CSM) reduces
the bandwidth consumption up to 85.71% (2 vs. 14 streams).

3.2 Service Bandwidth Requirement for Multiple Videos

In order to measure the bandwidth requirement of a server that is offering more
than one video, we suppose that the catalog is 30 to 550 videos. We consider
that the number of requests that arrive during the video length(90Minutes) is
from 90 (low client activity) to 4500 (high client activity).
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a)100 videos, 90-4500 requests in 90min b)30-550 videos, 2700 requests in 90min

Fig. 5. Server bandwidth requirement for multiple videos

Fig 5 a) shows the server bandwidth needed to serve 100 videos. The Patching
policy shows an increase in bandwidth requirement where there is high client
activity (768 and 859 channels in order to serve 3600 and 4500 requests in 90
minutes). The PSM reduces the required stream up to 6.4%(804 vs. 859), while
DDCM(PSM+CSM) reduce up to 64.61% (304 vs. 859).

We also obtained the bandwidth requirement if a client is not able to col-
laborate with the server to merge the channels that are not delivering the
same video as the one that the client is playing. As we can see in Fig 5 a)
(DDCM(SameMovie)) the requirement is clearly higher than the DDCM with-
out this restriction. These results justify our delivery policy design.

Fig 5 b) shows the server bandwidth requirement according to the size of the
catalog. We have supposed that 2700 requests arrive in 90 Minutes. Regardless
of the delivery policy, the bandwidth requirement increases in accordance with
the number of videos. The DDCM shows a requirement reduction of between
85.23%(30 videos) to 27.77%(550 videos). The DDCM is able to reduce the
number of required channels by 300-344.

3.3 Circumstantial Workload Variations

In this section we are interested in measuring the server’s capacity to face circum-
stantial workload variations. Suppose the following situation: we are designing
a VoD system for 3600 clients and, for most of the time, only 50% of the clients
are active. Taking the equipment cost into consideration, the VoD server could
be designed for a particular, acceptable blocking probability. Most of times, the
server is able to attend to all the client requests(20 requests/minute). However,
in special situations, such as the Olympic Games, all 3600 clients may decide to
request videos at same time (40 requests/minute). Furthermore, since the most
of population is interested in this event, the video’s popularity distribution could
change, increasing the skew parameter of Zipf-like distribution.

Fig 6 shows the requirement variation when twice the number of client re-
quests reach the server. With a Patching policy, the resource requirement in-
creases by 51.58% to 34.74% depending on the skew parameters variation. As
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Fig. 6. Requirement increase in circumstantial workload variation

the skew fact increases, the resource requirement variation gets lower. With PSM,
the resource increases 32.60% when the skew fact increases to 1 from 0.9. In this
case, the PSM is 6.1% better than a Patching policy that produces an increase
of 34.74%. DDCM policy produces a maximum increase of 16.67% if there is
no variation in popularity distribution. In the worst case (skew fact 0.9), the
DDCM is 67.68% better than a Patching policy in terms of increase in resource
requirement.

4 Conclusions

We have proposed and evaluated a new video delivery technique called Dynamic
Distributed Collaborative Merging that enables clients to efficiently collaborate
with VoD servers. With DDCM policy, every client is able to collaborate with
server, regardless of the video that they are watching. Instead of independent
collaborations between the server and a client, the DDCM synchronizes a group
of clients in order to merge multicast channels to achieve a better network effi-
ciency.

Our experimental results show that DDCM has lower resource requirements
than Patching policy, achieving reduction up to 92.5%. Offering multiple videos
with high client activity, the DDCM is able to reduce the resource requirement
up to 64.61%. These results corroborate the high scalability of DDCM when
the number of requests is high. The DDCM achieves a more suitable investment
in VoD server resources, since the client’s punctual variation in the demand is
covered by client contributions. Experimental results show that the DDCM is
67.68% better than Patching policy in terms of increase in resource requirement,
suggesting that DDCM is more suitable delivery policy for VoD, in which the
number of active clients changes over time.

5 Future Work

In this study, we have not considered the client network load that will suffer
due to our policies and more research will be needed. However, we would like to
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point out that multicast schemes are usually effective in local networks. Fault
tolerance is another pending question that should be carefully analyzed.
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