

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 451 – 459, 2005.
© Springer-Verlag Berlin Heidelberg 2005

TAccelerating Protein Structure Recovery Using
Graphics Processing Units

Bryson R. Payne1, G. Scott Owen2, and Irene Weber2

1 Georgia College & State University, Department of ISCM, Milledgeville, GA 31061
bryson.payne@gcsu.edu

2 Georgia State University, Department of Computer Science, Atlanta, GA 30303
owen@siggraph.org, iweber@gsu.edu

Abstract. Graphics processing units (GPUs) have evolved to become powerful,
programmable vector processing units. Furthermore, the maximum processing
power of current generation GPUs is technically superior to that of current
generation CPUs (central processing units), and that power is doubling
approximately every nine months, about twice the rate of Moore’s law. This
research represents the first successful application of GPU vector processing to
an existing scientific computing software package, specifically an application
for computing the tertiary (3D) geometric structures of protein molecules from
x-ray crystallography data. A framework for applying GPU parallel processing
to other computational tasks is developed and discussed, and an example of the
benefits of taking advantage of the visualization potential of newer GPUs in
scientific computing is presented.

1 Introduction

The graphics processing units of the past four years have increased the capabilities of
previous generations by a factor of two every six to nine months. Programmable
graphics processing units (GPUs) are commonly included as hardware components in
new computer workstations, including those workstations used for scientific
computing. The current generation of GPUs is roughly equivalent to or greater than
the processing power of current CPUs (central processing units), but that power is
rarely used to its full capabilities. Numerous advances have been made recently in
applying the GPU to non-graphical parallel matrix processing tasks, such as the Fast
Fourier Transform (FFT) [6]. This research seeks to apply the vector processing
power of a GPU to automatically computing the 3D geometry of proteins from x-ray
crystallography data in an existing software package.

Our primary goal is to apply distributed GPU-CPU computation to automated
tertiary structure fitting in protein crystallography, a process that normally takes
several hours or even days to execute on a sequential CPU. We proposed to use
existing software, ARP/wARP [11], that is already fully-featured and widely used in
the industry rather than producing a competing package for several reasons. First,
change is difficult to engender in any field, especially where the learning curve
for effective utilization of new software is steep. Second, the software packages
in existence are already well-suited to the needs of researchers in protein

452 B.R. Payne, G.S Owen, and I. Weber

crystallography. Producing a complete product solely for the purpose of
demonstrating GPU acceleration would have required hundreds of thousands of lines
of programming to match the capabilities of packages already widely accepted
and used.

Our secondary goal is to produce a reusable, portable framework for applying GPU
computation to scientific computing problems in other fields. As GPUs gain
acceptance as parallel vector processing units, a generalized framework for taking
advantage of available GPU vector processing power in other scientific computing
applications is needed. By documenting and examining the steps taken to add GPU
parallel computation to an existing scientific computing package, it is hoped that
future researchers will be able to reapply that framework to other existing and new
software packages in other fields.

2 Literature Review

The first programmable consumer GPUs became available less than four years ago.
The first generation of programmable GPUs was not well-suited to general-purpose
computation for several reasons. First, they allowed access to only selected portions
of the graphics pipeline and had no easily accessible off-screen rendering capabilities.
Second, they had to be programmed in GPU-specific assembly code, with no
standardization across manufacturers. Third, their limited accuracy of 8 bits-per-pixel
combined with their slower clock speeds and memory accesses, as well as smaller
memory sizes, compared to CPUs made them unattractive to general-purpose
computing researchers who needed fast 32-bit floating point operations as a minimum
point of entry.

By late 2002, however, a C-like programming language for the GPU, named Cg
[5], had been developed for cross-platform GPU programming. Cg contained
constructs for looping and conditional branching, required for most general-purpose
computing, but GPU hardware took another two years to catch up to the capabilities
provided for in the Cg language. Only in the NVIDIA GeForce FX6800 series GPU,
released in late 2004, was it first possible to take advantage of true conditional
branching on the GPU, as well as handle loops or programs that consisted of more
than 1024 total instructions per pixel [8]. These advances enabled the research in this
paper, and the previous work [9] upon which it is based.

2.1 The Bioinformatics Problem

X-ray crystallography is the most commonly used method for determining the 3D
structure of proteins in bioinformatics. The 3D structure of a protein is valuable
because it determines many of the protein's properties [4], making structure
information useful in drug discovery research as well as many other fields in the
biosciences. ARP/wARP [11] is the most popular, and most accurate, software
package for automatically determining the structure of proteins from x-ray
crystallography data [1]. ARP/wARP is used by researchers in our own
Bioinformatics Lab so this program was the focus of our efforts.

 TAccelerating Protein Structure Recovery Using Graphics Processing Units 453

ARP/wARP makes use of an iterative structure refinement process by means of a
program called Refmac [7]. In run-time analysis, Refmac consumed as much as 83%
of the run time of a typical 3D structure computation under ARP/wARP, and the
source code for Refmac is freely available. Refmac was, therefore, selected as the test
bed for our GPU acceleration research, as well as the subject of our investigation into
visualization advantages of current GPUs in scientific computing.

3 Implementation

We first desired a proof of concept to test whether the stated superior performance of
GPUs was possible to achieve in situations well-suited to the GPU. Our first
implementation steps were to demonstrate that the GPU was at least as fast as the
CPU at performing 2D convolutions like averaging filters, edge detection, and the
Gaussian smoothing filters before implementing more complex algorithms for
scientific computing. Straightforward algorithms for convolutions on the GPU and on
the CPU were developed for comparison across a wide variety of matrix and image
sizes (32x32 to 4096x4096).

3.1 Building GPU Code for ARP/wARP

In a trial run on a 247-residue protein molecule, ARP/wARP was able to fit 238 of the
247 peptides to a model with 98% connectivity in 18 hours on a 2.8 GHz CPU, using
1200 iterations of refinement. As previously mentioned, it was determined through
run-time analysis that the most time-consuming process in ARP/wARP for our
purposes is the Refmac refinement step, which uses an open-source molecular
refinement program [7]. Therefore, we focused our attention on applying distributed
GPU-CPU processing to the Refmac algorithms.

Run-time profiling with the GNU compiler tool gprof yielded two subprograms in
Refmac that consumed over 30% of the total processing time of the program, indens
and prot_shrink. Due to the fact that indens could take up to 25% of the total
runtime, while prot_shrink accounted for 10% or less of the runtime across a
sample set of three proteins of varying sizes, attention was given to indens first. We
set out to translate indens from its native FORTRAN for the CPU to Cg on the GPU.

3.2 Toward a Framework

Integrating GPU-CPU distributed computation with existing bioinformatics software
introduces two significant hurdles: commingling C and Cg code for the GPU with the
native FORTRAN of Refmac, and re-mapping 1D, 2D, and 3D matrix computation
from the CPU to 2D texture calculations on the GPU. Our goal with respect to these
challenges is to produce a reusable framework for adding GPU acceleration of matrix
computation to existing computational tools across any field of scientific computing.
We also hope to demonstrate the advantages of adding 3D visualization, which the
GPU handles optimally, to general purpose and scientific computing software
packages.

454 B.R. Payne, G.S Owen, and I. Weber

4 Experimental Results

The GPU proved to be much faster at straightforward convolutions like Gaussian
smoothing, averaging filters, and edge detection. In the case of a 3x3 convolution
filter, the GPU (an NVIDIA GeForce FX6800) was from 10 to 90 times faster at high
resolutions (2048x2048) than the CPU (a 2.8 GHz Intel Pentium 4), even after
communication between main memory and the GPU was accounted for (see Figure 1).

Most image processing packages do not perform straightforward convolution
algorithms, however. On the CPU, it is usually several times faster to use the Fast
Fourier Transform (FFT) and perform a matrix multiplication, which is much faster
on the CPU than a convolution, then use the inverse Fourier Transform to reacquire
the resulting image. The GPU is still a full order of magnitude faster than the CPU
even after Fourier optimization, which raises the possibility that Fourier processing
for convolutions could become obsolete.

Fig. 1. Comparison of processing speed of various operations on CPU vs. GPU

The GPU is especially well-suited to performing 2D convolutions and
morphological masking and filtering operations. Furthermore, programming the GPU
version of these algorithms is a straightforward process, allowing the developer to
access pixel neighborhoods using a relative indexing paradigm rather than a
complicated modular arithmetic scheme for referencing 2D array elements in main
memory. Figure 2 shows the GPU code in Cg for performing a 3x3 averaging filter.
Figure 3 shows the same algorithm in a straightforward CPU implementation in C.

Notice that the Cg code shows relative texture lookups using vectors like (-1, 1) to
denote left one, down one from the current pixel. The C version, on the other hand, is
more difficult for several reasons. First, the C version must treat each color
component (red, green, and blue, or RGB) as separate computations, while the GPU
computes all three components simultaneously as three-component vectors of type
TTfloat3. Second, the C method of computing array positions is one-dimensional
rather than the 2D relative indexing of Cg. Therefore, non-intuitive modular
arithmetic is necessary to resolve the location in main memory of a pixel that is one

 TAccelerating Protein Structure Recovery Using Graphics Processing Units 455

unit left and one down from the current pixel. More information on digital image
processing on GPUs can be found in a related paper [10].

float3 a[9];
a[0] = texRECT(image, texCoord + float2(-1, 1));
a[1] = texRECT(image, texCoord + float2(0 , 1));
a[2] = texRECT(image, texCoord + float2(1 , 1));
a[3] = texRECT(image, texCoord + float2(-1, 0));
a[4] = texRECT(image, texCoord + float2(0 , 0));
a[5] = texRECT(image, texCoord + float2(1 , 0));
a[6] = texRECT(image, texCoord + float2(-1,-1));
a[7] = texRECT(image, texCoord + float2(0 ,-1));
a[8] = texRECT(image, texCoord + float2(1 ,-1));
color = (a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8])/9.0;

Fig. 2. A Cg 3x3 averaging filter function

int a1,a2,a3,a4,a5,a6,a7,a8,a9;
int wd=TexInfo->bmiHeader.biWidth;
int ht=TexInfo->bmiHeader.biHeight;
int m = wd*ht*3;
for (r=0; r<m;r++)
{
 a1=(r-(wd+1)*3+m)%m;
 a2=(r-(wd)*3+m)%m;
 a3=(r-(wd-1)*3+m)%m;
 a4=(r-3+m)%m;
 a5=r;
 a6=(r+3)%m;
 a7=(r+(wd-1)*3)%m;
 a8=(r+(wd)*3)%m;
 a9=(r+(wd+1)*3)%m;
 TexBits2[r] = (TexBits[a1]+TexBits[a2]+TexBits[a3]+TexBits[a4]+TexBits[a5]+
 TexBits[a6]+ TexBits[a7]+TexBits[a8]+TexBits[a9])/9;
}

Fig. 3. A simple subroutine in C for computing the 3x3 averaging filter

4.1 GPU Acceleration of Refmac

The GPU representation of the indens algorithm that operates on 1D arrays suffered
from the same type of problem as the CPU operating on 2D arrays, only in reverse.
Whereas the CPU version was able to use straightforward addressing to loop through
the arrays, the GPU had to use more costly modular arithmetic to determine texture
coordinates in 2D to correspond to the 1D positions of the array elements being
processed. Because of the inefficiency of this additional computation, a speedup on
the order of 90 times, as seen in straightforward convolutions, was not possible.
However, due to the fact that the original FORTRAN code was not optimized for
CPU caching, either, a significant advantage in speed was still afforded to the GPU
version of the code.

In run-time analysis of the two algorithms across three proteins of varying sizes,
the GPU version was 1.8 to 2.6 times faster than the GPU at the indens subprogram
than the CPU. Figure 4 below shows the comparison, with the GPU version broken

456 B.R. Payne, G.S Owen, and I. Weber

down into two components: CPU time (pre-processing and memory transfers from the
CPU to the GPU and back again) and GPU time (the actual processing time of the
algorithm on the GPU).

Old Algorithm vs. New Algorithm Breakdown

0

1

2

3

4

5

6

7

8

Small (139) Medium (247) Large (475)

S
ec

on
ds

Indens

IndensCg_CPU

IndensCg_GPU

IndensCg_Total

Fig. 4. Comparison of CPU and GPU versions of indens algorithm. The GPU version
(indensCg) is broken down into CPU time (texture transfer, readback, etc.) and GPU
processing time

While this demonstrated the significant potential for acceleration of a single
algorithm, the 1.8 to 2.6 times speedup in the indens subprogram translated to only
one to two hours of time savings on a 16 to 48-hour protein structure recovery. Even
if the prot_shrink algorithm could yield an optimal 90:1 speedup, due to the fact
that it consumes only 8-10% of each Refmac iteration, another hour or two would be
the maximum time savings possible in this application. Clearly the acceleration
potential of the GPU holds great promise in certain settings, but achieving significant
gains in general-purpose applications consisting of hundreds of algorithms and
subprograms may be achieved only by rewriting major portions of the code.

4.2 Adding Visualization to Refmac

The area of GPU potential still remaining to be explored was visualization. We had
already observed, from poring through log files from ARP/wARP, that the program
could resolve a great number of residue positions in a protein rather quickly, then
reach a plateau after which few of the remaining residues could be placed no matter
how many iterations were provided. However, ARP/wARP has no integrated
visualization tool that would enable the researcher to visually inspect a protein for
suitability and terminate the structure-building process early.

In the case of the smaller protein sample tested, a protein consisting of 139 amino
acids, or residues, 134 of the residues had been correctly placed after only 300
refinement cycles, a plateau that went unsurpassed in the remaining 900 iterations of
refinement. In other words, 12.6 hours of the 16.8 hour GPU-accelerated run time for
the smaller protein were unnecessary; a 96% complete solution was achieved in only
4.2 hours.

 TAccelerating Protein Structure Recovery Using Graphics Processing Units 457

By adding a system call once per Refmac iteration to a simple visualization
program, RasMol [2], it was possible to view updated results of the previous iteration
every one to four minutes, allowing the researcher to visually inspect the progress of
the structure-building process from a different workstation across the room without
having to sift through log or other intermediate files. Figure 5 shows some of the
simple visualization styles provided by RasMol.

Fig. 5. Three visualization views of a protein with 134 residues in RasMol (space fill, stick, and
ribbon views)

By providing this visual information automatically with no additional work on the
part of the researcher, it was possible to halt each structure at 90% completion for a
total time savings of 45 out of 80 hours of runtime, or 56%. It took only 34 minutes, 8
hours, and 26 hours, respectively, to resolve proteins with 139, 247, and 475 residues
to 90% completion, versus a total of 80 hours and 50 minutes to allow them to run to
96% completion. For a researcher skilled at manually placing the remaining residues,
the time saved by having automatic visualization built in to the model-building
process would have been over 10 times greater than the time saved by accelerating the
structure-building process using the GPU.

4.3 Developing a Framework

There were five main steps in the implementation used here that could be replicated
for use in any existing or new software development in order to make use of GPU
acceleration. First, run-time analysis, with a tool like gprof, is used to determine
which subroutines consume the majority of processing time. Second, the source code
of each high-use subroutine is examined for suitability for GPU implementation
(small number of large vectors or matrices in the computation, etc.). Third, the
selected algorithms are mapped to a 2D texture-rendering problem on a per-pixel
basis, which is the MIMD-processing model of the GPU. Fourth, the source code is
modified to include calls to the new GPU versions of the algorithms selected for
acceleration. Finally, run-time testing is used to determine the speedup, if any, and
adjustments are made, if needed, by revisiting steps two through four as needed.

While these steps are not trivial, they represent a model for future application of
GPU vector processing to existing and new scientific and general-purpose computing
packages. Possibilities for simplifying the framework in certain domains are given in
the following section.

458 B.R. Payne, G.S Owen, and I. Weber

5 Conclusions and Future Work

This research presents the first successful application of GPU parallel vector
processing to an existing scientific computing software package. In addition to
implementing GPU-based acceleration of the given software, a visualization
component was added to the process, resulting in a total time savings on the order of
60% over the CPU-only version with no visualization included.

In convolution-based operations from digital image processing (DIP), the GPU
showed a speedup of up to 90:1 over the same implementation on the CPU, and a full
order of magnitude of improvement over the FFT-optimized version of the algorithms
on the CPU. Because 2D DIP is well-suited to GPU acceleration, a fruitful area for
future research would be developing an image processing API at the same level of
abstraction as the Brook language [3] for stream processing. An API or multi-step
compiler system like Brook designed specifically for DIP operations could be a
significant step toward general-purpose utilization of the GPU as a parallel vector
processor.

While there exists significant potential for accelerating scientific computing by
using GPUs for parallel vector computation, three main obstacles still exist. First,
translating algorithms from the original implementations to 2D, GPU versions is not a
trivial process. Second, not all vector processing algorithms are good candidates for
GPU acceleration, including those with excessive branching and conditional logic.
Finally, differences in graphics hardware and drivers still pose a problem in
implementing the same algorithm across different platforms. A significant move
toward standardization in programming langages for GPUs will be necessary if GPUs
are to be used for scientific computing on a consistent basis.

References

1. Badger, J.: An evaluation of automated model-building procedures for protein
crystallography, Acta Crystallographica. International Union of Crystallography (2003)
823-827.

2. Bernstein, H.J., Sayle, R.: RasMol Molecular Graphics Visualization Tool. Available
online at http://openrasmol.com. (2000).

3. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.:
Brook for GPUs: Stream Computing on Graphics Hardware, Proceedings of ACM
SIGGRAPH 2004. ACM Press, (2004) 777-786.

4. Lunney, E.A.: Computing in Drug Discovery: The Design Phase, Computing in Science &
Engineering 3(5). IEEE, (2001) 105-108.

5. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: a system for programming
graphics hardware in a C-like language, ACM Transactions on Graphics 22(3), pages 896-
907. ACM Press, July 2003.

6. Moreland, K., Angel, E.: The FFT on a GPU, Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Eurographics
Association (2003) 112-119.

7. Murshudov, G.N., Vagin, A.A., Dodson, E.J.: Refinement of Macromolecular Structures
by the Maximum-Likelihood Method. Acta Crystallographica. International Union of
Crystallography, (1997) 240-255.

 TAccelerating Protein Structure Recovery Using Graphics Processing Units 459

8. NVIDIA Corporation: GeForce 6800 Product Overview. Available online at
http://www.nvidia.com/object/IO_12464.html. (2004).

9. Payne, B.R.:Accelerating Scientific Computation in Bioinformatics by Using Graphics
Processing Units as Parallel Vector Processors. (Doctoral dissertation, Georgia State
University, 2004). Dissertation Abstracts International (UMI. No. pending)

10. Payne, B.R., Owen, G.S., Belkasim, S.O.: Digital Image Processing on GPUs. Submitted
to the Fourth International Workshop on Computer Graphics and Geometric Modeling,
CGGM'2005. Emory University, Atlanta, USA, May 22-25, 2005.

11. Perrakis A., Morris R., Lamzin V.S.: Automated protein model building combined with
iterative structure refinement. Nature Struct. Biol., (1999) 458-463.

	Introduction
	Literature Review
	The Bioinformatics Problem

	Implementation
	Building GPU Code for ARP/wARP
	Toward a Framework

	Experimental Results
	GPU Acceleration of Refmac
	Adding Visualization to Refmac
	Developing a Framework

	Conclusions and Future Work
	References

